Skid adjuster for humps

Author:

Demyanov Alexander,Demyanov Alexey,Rybak Alexander

Abstract

The paper based on the analysis of the working conditions of railway transport shows that, ceteris paribus, an increase in actual durability and mean time before failure of rolling stock units is obtained through maintenance of wheelsets, especially during logistic processes on nonmechanized humps. One of the main causes for the service life decrease of wheelsets is brake damage. To eliminate such brake damage on highways, on-board braking dis-tance regulators mounted on the locomotive are used. In the hump yards, using such systems is not possible, since under marshalling, cars are detached from the locomotive. In this regard, an industrial challenge turns up to design a similar in purpose braking distance regulator for humps through skidding. To solve this problem, we developed a method of controlling the speed of cars to be sorted, which complements the widely used technology of the shoe braking and avoids the formation of one-way sliders. The paper presents a skid adjuster, which excludes brake damage to the rolling stock wheels by the slides on the humps using the shoe braking techniques. The motion equation of the rolling stock equipped with a skid adjuster on the hump tracks is developed. In the result of this study, an equation of car motion in the system of “rolling stock Hughes regulator way” allowing to enter the working elements of Hughes controller to an existing and debugged algorithm of any slides with minimal change it.

Publisher

EDP Sciences

Reference13 articles.

1. Burakov V.A., Improving train safety by improving and developing station technology (MIIT, 2006). (In Russian).

2. Contact fatigue damage to the wheels of freight cars / Sat. scientific VNIIZHT proceedings (Hhtckct, 2004). (In Russian).

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Problem of structuredness of design tasks of technical object;INTERNATIONAL SCIENTIFIC AND PRACTICAL CONFERENCE “INNOVATIVE TECHNOLOGIES IN AGRICULTURE”;2023

2. Energy saving mechanical systems in transport processes;PROCEEDING OF THE 7TH INTERNATIONAL CONFERENCE OF SCIENCE, TECHNOLOGY, AND INTERDISCIPLINARY RESEARCH (IC-STAR 2021);2023

3. Dynamic analysis of industrial injuries with the participation of the country’s young population. Comparison of indicators;IOP Conference Series: Materials Science and Engineering;2021-01-19

4. Analysis of the design of the high-speed hydraulic drive of the reciprocating motion of the perforating press hammer;IOP Conference Series: Materials Science and Engineering;2020-12-31

5. Industrial injuries at the enterprise;IOP Conference Series: Materials Science and Engineering;2020-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3