Strapdown inertial navigation systems readings correction based on navigational data of other sensors and systems with intelligent selection of the priority adjuster

Author:

Trefilov P.M.,Mamchenko M.V.,Korol’kov A.V.

Abstract

Strapdown inertial navigation systems (SINS) are one of the main components of the navigation systems of the drones and aircraft (including autonomous ones), but their readings need to be instanly corrected due to the constant accumulation of errors. This paper comprises the review of existing approaches to using one or more sensors or systems to correct the navigation data of SINS algorithms (herein after – correctors) using integrated information processing. A common disadvantage of the analysed approaches is the lack of flexibility concerning the types and the number of SINS correctors used, as well as the growth of computational burden due to the use of the measurement vectors of all the correctors in the process of forming the state vector of the system. This article proposes the use of the original adaptive scheme based on the selection of the least noisy data, taking into account environmental conditions, for the integrated processing of the SINS and the correctos’ navigation parameters. The essence of the approach is that the state vector is estimated on the basis of the most reliable corrector. This allows reducing the correlation of errors in the correctors’ measurement of navigational parameters, since only the measurement vectors (or vector) with best navigational data signal/noise ratio (received from the corresponding correctors) are used in forming the state vector. Furthermore, the proposed navigational data fusion scheme has a modular structure and greater flexibility in comparison with the loosely coupled systems, and also implies the use of an arbitrary number of correction sensors and systems regardless of the physical nature of their measurements.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3