Influence of abiotic factors on CO2-gas exchange of Pinus pallasiana, Juniperus excelsa and Arbutus andrachne

Author:

Korsakova S,Plugatar Y,Pashtetsky A,Ilnitsky O

Abstract

The complex interactions among environmental factors as incident light, temperature and soil water content create the need for used physiology-based models which describe plants performance under current and changing climatic conditions. In the present work the net photosynthetic rate of Pinus pallasiana D. Don, Juniperus excelsa M.Bieb. and Arbutus andrachne L. was modeled as a function of light irradiance using the modified rectangular hyperbola model, which is capable of describing the photoinhibition by the non-rectangular hyperbola function. A comparative assessment of the adaptive response of the photosynthetic apparatus plants on the effect of abiotic factors and their strategies in maintaining an optimal water balance in accordance with environmental conditions has been performed. The parameters of light curves of photosynthesis under conditions of full sunlight, moderate shading and drought are determined. In relation to light, Pinus pallasiana is characterized by wider ecological amplitude compared to Juniperus excelsa and Arbutus andrachne. Inefficient use of low-intensity of photosynthetically active radiation by immature plants Pinus pallasiana and Juniperus excelsa indicates poor shade tolerance and inability to resume in shade-type forests. Due to the low plasticity to changes in the light regime, Arbutus andrachne L. may experience a significant lack of light in strong shading. Arbutus andrachne has the highest ability to actively rearrange water regime in accordance with its external moisture supply, which causes the highest drought resistance, and Juniperus excelsa has a slightly lower capacity. Tolerance to hydrothermal stress in Pinus pallasiana is significantly lower than in Arbutus andrachne and Juniperus excelsa.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3