Finite elements for problems of the elasticity theory with the discontinuous stress approximation

Author:

Lukashevich A,Lukashevich N,Kobelev E

Abstract

The paper deals with the development of the finite element models on the basis of stress approximation. At present, the displacementbased finite element method is mainly used for engineering calculations. Finite element formulations in stresses are not so widely spread, but in some cases these formulations can be more effective in particular with respect to the calculating stresses and also obtaining a two-sided estimate of the exact solution of the problem. The finite element models based on the approximation of discontinuous stress fields and the use of the penalty function method to satisfy the equilibrium equations are considered. It is shown that the continuity of both normal and tangential stresses only on the adjacent sides of the finite elements contributes to the expansion of the class of statically admissible stress fields. At the same time, the consistent approximation is provided, both of the main part of the functional of additional energy, and its penalty part. The necessary matrix relations for rectangular and triangular finite elements are obtained. The effectiveness of the developed models is illustrated by numerical studies. The calculation results were compared with the solution on the FEM in displacements, as well as with the results obtained using other schemes of approximating the stresses in the finite element. It is shown that the model of discontinuous stress approximations gives the bottom convergence of the solution, both in stresses and in displacements. At the same time, the accuracy on the stresses here is much higher than in the displacement-based FEM or when using conventional stress approximation schemes.

Publisher

EDP Sciences

Reference20 articles.

1. Zienkiewicz O C, Taylor R L and Zhu J Z 2013 The Finite Element Method: Its Basis and Fundamentals (Butterworth-Heinemann) p 756

2. Bathe K J 2016 Finite element procedures (Englewood Cliffs: Prentice Hall) p 1043

3. The Finite Elements Research for Calculation of Thin-Walled Bar Systems

4. Finite element method on fractional visco-elastic frames

5. Modelling and numerical solution of problems of structural mechanics with unilateral constraints and friction

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3