Classification of Weaving Motifs Based on Their Area of Origin Using the Support Vector Machine Algorithm

Author:

Jusman Yessi,Tawaqal Iqbal,Intan Rahmawati Maryza

Abstract

Indonesia has many cultural riches in the form of traditional fabrics, one of which is woven fabrics. Woven fabrics from each region showcase distinctive motifs, manifesting the local community’s daily life, culture, natural conditions, and beliefs. The diverse weaving motifs pose a challenge in determining the origin of the woven fabrics. It highlights the necessity of a system to detect and identify woven fabrics. Texture analysis was performed using the Gray Level Co-occurrence Matrix (GLCM). A classification method based on a Support Vector Machine (SVM) consisting of four models: Linear SVM, Quadratic SVM, Cubic SVM, and Fine Gaussian SVM was developed in this research. The images of woven fabrics came from three regions in Indonesia: Sumatra, Kalimantan, and Nusa Tenggara. This research utilized 240 training images and 12 testing images. The testing results unveiled that the Cubic SVM model, which achieved a 100% accuracy rate in 1.0835s, was the optimum SVM model for the weaving classification.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3