Author:
Nasution Halimatuddahliana,Asdita Meinissa,Zoelva Avania,Syabina Asraf Faiza,Atqia Tamanni Dhaifuri,Mufidah Lubis Nadiatul
Abstract
Starch-derived bioplastics have weaker mechanical properties than conventional polymers and a short lifespan due to their susceptibility to microbial degradation. This study examines the impact of microcrystalline cellulose (MCC) and betel leaf extract on the characteristics of sago starch bioplastic composites. Microcrystalline cellulose extracted from coconut coir improves tensile strength, and betel leaf extract improves antibacterial properties. This study began by isolating alpha-cellulose from coconut coir and continued by isolating microcrystalline cellulose via the hydrolysis procedure employing hydrochloric acid. As an antibacterial, this research extracted betel leaf using 96% ethanol and a rotary evaporator. MCC variations of 0, 2, and 4(b) and betel leaf extract variations of 0, 3, and 6%(v) in 100 g of sago starch were examined. Up to 20% of the combination comprises glycerol as a plasticizer(v). MCC and betel leaf extract altered bioplastic composites’ properties. A bioplastic composite with 2% MCC and 6% betel leaf extract can inhibit the growth of Bacillus cereus bacteria. It has a tensile strength of 274,531 kPa, an elongation at break of 3.72%, a density of 0.724 g/cm3, and a water absorption of 7.79%. It concludes that MCC and betel leaf extract had an antibacterial effect in starch bioplastic composite.
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献