Effect of nitrogen fertilization on maize yield responses to soil microbial activity and root length density in the North China Plain

Author:

Li Qiuhua,Sun Jingjing,Yao Jun,Wang Qunhui

Abstract

A maize field experiment in the North China Plain was conducted to understand the effect of different N fertilizer rate on the yield of maize, using soil microbial activity and root length density (RLD) as performance parameters, due to their possibility to enhance productivity. The four N fertilizer rates were 0 (N0), 120 (N120), 210 (N210) and 300 (N300) kg N hm-2. The results indicated that nitrogen (N) fertilizer had a significant influence not only on yield (p<0.05), but also on root length density (p<0.05) and soil microbial activity (p<0.05). In addition, the soil microbial activity and RLD were significantly related with maize yield. RLD differences were generally evident within the 100 cm soil layer, whereas there was no difference in the deeper soil under different N treatments. The most RLD concentrated in 0-60cm soil layer under N0, N120 and in 0-90cm soil layer under N210, N300. The microbial growth rate constant (k) was greater in N210 than other treatments. Generally, N fertilizer application can stimulate root growth and microbial activity, meanwhile, they can interact with each other, heighten the availability of N fertilizer in soil, thus enhanced yield of maize. According to our study, 210 kg N hm-2 was the optimum N fertilizer rate to achieve maximum yield and sustain the soil productivity.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3