Reversible Solid Oxide Cell (ReSOC) as flexible polygeneration plant integrated with CO2 capture and reuse

Author:

Buffo Giulio,Ferrero Domenico,Santarelli Massimo,Lanzini Andrea

Abstract

This work presents the concept of a Reversible Solid Oxide Cell (ReSOC) system localized in an urban residential district. The system is operated as a polygeneration plant that acts as interface between the electricity grid and the local micro-grid of the district. The ReSOC plant produces hydrogen via electrolysis during periods of low electricity demand (i.e., low-priced electricity). Hydrogen is used for multiple city needs: public mobility (H2 bus fleet), electricity production delivered to the micro-grid during peak-demand hours, and heat (accumulated in a storage) provided to the local district heating (DH) network. An additional option analyzed is the use of part of the H2 to produce DME using CO2 captured from biogas obtained from municipal solid wastes. The DME is used for fueling a fleet of trucks for the garbage collection in the residential district. A traditional CO2 removal process based on liquid MEA thermally integrated with the ReSOC system is studied. A time-resolved model interfaces the steady-state operating points with the thermal storage and the loads (electrical, H2 buses, DME trucks, heat), implementing constraints of thermal and H2 self-sufficiency on the system. Neglecting the DME option, the average daily roundtrip electric efficiency is about 38%, while the annual efficiency, which includes H2 mobility and thermal energy to DH, reaches 68%. When the DME option is considered, the thermal demand for CO2 removal and conversion process reduces the heat availability for DH, while the need for additional H2 for DME synthesis increases the electricity consumption for water electrolysis: both these phenomena imply a reduction of system efficiency (-9%) proportional to DME demand.

Publisher

EDP Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3