On one approach to the detection of infrasonic signals of irregular natural phenomena in the instrumental observations time series at the student interdisciplinary testing ground

Author:

Kudryavtsev Nikolay,Safonova Varvara,Temerbekova Albina

Abstract

The work is devoted to the analysis of time series and the problem of processing signals obtained as a result of the design approach implementation during the organization of instrumental observations of irregular natural phenomena at the student interdisciplinary testing ground. The objective of the work is to study the methods of processing noisy signals obtained as a result of monitoring the infrasonic environment, which make it possible to automate the search for fragments of the time series generated by irregular natural phenomena. At the beginning of the work, a brief explanation of the essence of the measuring scientific experiment carried out within the framework of the project approach used in the additional education of students and schoolchildren shall be given. The following is a review of publications describing various approaches to the analysis of nonstationary time series obtained in the process of instrumental observations. As the main method of time series analysis, it is proposed to use the algorithm for calculating the fractal dimension of the time series, proposed by T. Higuchi [1]. During studying of the time series of infrasonic signals, a number of regularities were discovered that contribute to the development of an original procedure for processing and transforming the signal under study, which makes it possible to determine the time intervals of fragments of the time series corresponding to the signals of the desired natural phenomena. The essence of the proposed approach lies in the preliminary preparation of the time series by processing the data with a simple normalized difference filter, previously smoothed by performing the coenvolution (convolution) operation with a Gaussian kernel; determining the step of segmenting the normalized time series, calculating fractal dimensions and averaged amplitudes for each of the segments of the time series and obtaining on their basis vectors of changes in dimensions and amplitudes with their subsequent element-wise multiplication. It is shown that the maximum values of the components of the resulting vector are indicators of timestamps for the location of the desired signals.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3