Algorithms and methods for automated construction of knowledge graphs based on text sources

Author:

Filippov Victor,Ayusheeva Natalya,Kusheeva Maria

Abstract

In this article, we present our path towards building knowledge graphs automatically from Russian texts. We explore various methodologies and libraries to extract triples, which are the fundamental building blocks of knowledge graphs. Our approach involves the use of libraries for analyzing morphological characteristics of words, such as PyMorphy and Yandex Mystem, to construct triples. We also utilize the NLP library spaCy to analyze text and build triples based on semantic relationships recognized by the library. However, we found that in some cases, we could not extract relationships from the text, leading us to use word2vec to define relationships. Unfortunately, the results obtained from word2vec were unsatisfactory and could not be used as relationships. We also encountered the problem of building triples from text due to the use of pronouns. To address this issue, we explored the use of coreference resolution libraries, but unfortunately, there are no working libraries available for the Russian language at this time. Our results highlight both positive and negative outcomes of applying these methodologies and libraries, providing insights into the challenges and opportunities of building knowledge graphs automatically from Russian texts.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3