Machine Learning in predicting the extent of gas and rock outburst

Author:

Bodlak Maciej,Kudełko Jan,Zibrow Andrzej

Abstract

In order to develop a method for forecasting the costs generated by rock and gas outbursts for hard coal deposit "Nowa Ruda Pole Piast Wacław-Lech", the analyses presented in this paper focused on key factors influencing the discussed phenomenon. Part of this research consisted in developing a prediction model of the extentof rock and gas outbursts with regard to the most probable mass of rock [Mg] and volume of gas [m3] released in an outburst and to the length of collapsed and/or damaged workings [running meters, rm]. For this purpose, a machine learning method was used, i.e. a "random forests method" with the "XGBoost" machine learning algorithm. After performing the machine learning process with the cross-validation technique, with five iterations, the lowest possible values of the mean-square prediction error "RMSE" were achieved. The obtained model and the program written in the programming language "R" was verified on the basis of the "RMSE" values, prediction matching graphs, out of sample analysis, importance ranking of input parameters and the sensitivity of the model during the forecast for hypothetical conditions.

Publisher

EDP Sciences

Reference16 articles.

1. Harvey C.R., Int. Symp. Workshop on Managementand Control of High Gas Emissions and Outbursts in Underground Coal Mines, Wollongong (1995)

2. Black D.,Aziz N.,Jurak M.,Florentin R., The Coal Operators' Conference University of Wollongong& the Australasian Institute of Mining and Metallurgy (2009)

3. Aziz N.,Black D.,Ren T., First International Symposium on Mine Safety Science and Engineering (2011)

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3