A Comparative Study using Feature Selection to Predict the Behaviour of Bank Customers

Author:

Musunuru Sreethi,Mukkamala Mahaalakshmi,Kunaparaju Latha,Raju N V Ganapathi

Abstract

Though banks hold an abundance of data on their customers in general, it is not unusual for them to track the actions of the creditors regularly to improve the services they offer to them and understand why a lot of them choose to exit and shift to other banks. Analyzing customer behavior can be highly beneficial to the banks as they can reach out to their customers on a personal level and develop a business model that will improve the pricing structure, communication, advertising, and benefits for their customers and themselves. Features like the amount a customer credits every month, his salary per annum, the gender of the customer, etc. are used to classify them using machine learning algorithms like K Neighbors Classifier and Random Forest Classifier. On classifying the customers, banks can get an idea of who will be continuing with them and who will be leaving them in the near future. Our study determines to remove the features that are independent but are not influential to determine the status of the customers in the future without the loss of accuracy and to improve the model to see if this will also increase the accuracy of the results.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3