Comparative Analysis between Proportional-Integral and Artificial Neural Network Control of a Grid-Connected PV System

Author:

Gouaamar Radouan,Bri Seddik,Mekrini Zineb

Abstract

This article presents a comprehensive analysis of the modeling and control techniques applied to a photovoltaic (PV) system that is connected to a three-phase grid. To successfully integrate the PV system with the electrical grid, an innovative and reliable controller has been designed and put into practice. The utilization of an artificial neural network (ANN) enables the system to optimize power extraction from the PV panels, benefiting from the ANN's resilience and swift response to varying conditions. Moreover, a robust proportional-integral (PI) control strategy is introduced to govern the grid-side operations. This strategy of action focuses on managing the injection of both active and reactive electricity into the grid as well as controlling the voltage of the DC bus. A series of detailed simulations were carried out evaluating the efficiency of the suggested control strategy in the MATLAB/SIMULINK. The results obtained from these simulations share insightful information on the effectiveness and efficiency of the control system in ensuring optimal operation and power management of the PV system within the grid-connected setup.

Publisher

EDP Sciences

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3