Development of the model for a diesel engine catalytic converter

Author:

Blinov Artem,Malastowski Nikolay,Myagkov Leonid

Abstract

One of the key issues of the modern engine development is to comply with today’s stringent emission standards. It forces the manufacturers to enhance in-engine and after treatment emission reduction technologies continuously. The selective catalytic reduction (SCR) is still the most effective technique for nitrogen oxides removal from exhaust gases of vehicles with diesel engines. Numerical modelling is widely used for SCR systems development and assessment. In this paper, a simplified one-dimensional numerical model of diesel SCR catalyst, which was implemented in Matlab, is described. The algorithm for automatic mesh generation describing real cross-section geometry of the catalyst block and the calculation procedure allowing to take into account non-uniform distribution of the gas flow parameters at the catalyst inlet are presented. Model was validated by the experimental data available in the literature. Numerical simulations for the full-scale modern SCR catalyst were carried out. The effect of the gas velocity non-uniformity at the catalyst inlet on the overall NOx reduction efficiency was evaluated.

Publisher

EDP Sciences

Reference29 articles.

1. Biofuel Mixture Composition and Parameters of Exhaust Gases Toxicity

2. Barchenko F. B. and Bakulin V. N., J. Eng. Phys.Thermophys. 90, (2017)

3. Natriashvili T., Kavtaradze R., and Glonti M., in IOP Conf. Ser. Mater. Sci. Eng. (Institute of Physics Publishing, 2018)

4. Dallmann T., Posada F., and Bandivadekar A., Costsof Emission Reduction Technologies for DieselEngines Used in Non-Road Vehicles and Equipment(2018)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Numerical simulation of transient heat transfer of a catalyst substrate;VII INTERNATIONAL CONFERENCE “SAFETY PROBLEMS OF CIVIL ENGINEERING CRITICAL INFRASTRUCTURES” (SPCECI2021);2023

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3