Nonlinear parametric oscillations of a viscoelastic shallow shell of variable thickness

Author:

Khodzhaev Dadakhon,Normuminov Bakhodir,Mustapakulov Yazdan,Mottaeva Angela

Abstract

The problem of parametric oscillations of an isotropic viscoelastic shallow shell of variable thickness under periodic load is considered. It is believed that under the influence of specified load, the shallow shell allows displacements (in particular, deflections), commensurate with its thickness. In a geometrically nonlinear statement, taking into account the viscoelastic properties of material, a mathematical model of the problem has been developed using the classical Kirchhoff-Love hypothesis. Using the Bubnov-Galerkin method based on the polynomial approximation of the deflections, the problem is reduced to the study of the system of integro-differential equations, where time is the independent variable. The solution of the system of integrodifferential equations is determined by the proposed numerical method. Based on this method, a numerical solution algorithm is described. The Koltunov-Rzhanitsyn kernel with three different rheological parameters is chosen as a weakly singular kernel. At the same time, the effect of geometric nonlinearity, viscoelastic properties of material, as well as other physicomechanical and geometric parameters and factors (rheological parameters, thickness, initial shape imperfections, aspect ratios, boundary conditions, excitation coefficient) on the area of dynamic instability is taken into account. The results obtained in this study are in good agreement with the results and data obtained by other authors.

Publisher

EDP Sciences

Reference27 articles.

1. Bolotin V.V., The dynamic stability of elastic systems (Holden-Day, San Francisco, 1964)

2. Volmir A.S., Stability of deformable systems (Nauka, Moscow, 1967)

3. Krysko V.A., Nonlinear statics and dynamics of inhomogeneous shells (Publishing House of Saratov University, Saratov, 1976)

4. Karpov V.V., Geometrically nonlinear problems for plates and shells and methods for solving them (Publishing house ASV, SPbSACU, SPb, 1999)

5. Rabotnov Y.N., Elements of hereditary solid mechanics (Mir Publishers, Moscow, 1980)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3