An Assessment of the Use of Static Magnetic Field for Sodium Fluoride Defluoridation and Removal of Escherichia Coli and Rotavirus Pathogens from Water

Author:

Simiyu Mary T.,Nyongesa Francis W.,Aduda Bernard O.,Birech Zephaniah,Nikolina Illic

Abstract

The use of chemicals such as chlorine in water purification leaves harmful biproducts in the water while filtration techniques such as reverse osmosis, ultrafiltration, nanofiltration, and forward filtration are costly and require external energy for their operation. Ceramic water filters that would have addressed these issues are brittle and incapable of filtering viruses. In this work, we report on the efficiency of water purification using a 0.8 T static magnetic field from permanent magnets in defluoridation of sodium fluoride and purification of Escherichia coli, and Rotavirus. The contaminated water was circulated at varying velocities of 0.1 ml/s to 2.0 ml/s at an ambient temperature of 16.0 °C to 40.0 °C for 0.5 hours to 9.0 hours. It was found that when ionized water was circulated under the static magnetic field for nine hours, its pH was lowered by 9.7% and the velocity of water in circulation did not affect the purification efficiency. The static magnetic field equally lowered the replication of Escherichia coli and Rotavirus by 9.8% and 7.1% respectively. Furthermore, 14.1% of defluoridation of water was also achieved. Thus, a 0.8 T static magnetic field was not able to purify water to recommended levels.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3