The Use of Principal Component Analysis for Source Identification of PM2.5 from Selected Urban and Regional Background Sites in Poland

Author:

Błaszczak Barbara

Abstract

The paper reports the results of the measurements of water-soluble ions and carbonaceous matter content in the fine particulate matter (PM2.5), as well as the contributions of major sources in PM2.5. Daily PM2.5 samples were collected during heating and non-heating season of the year 2013 in three different locations in Poland: Szczecin (urban background), Trzebinia (urban background) and Złoty Potok (regional background). The concentrations of PM2.5, and its related components, exhibited clear spatiotemporal variability with higher levels during the heating period. The share of the total carbon (TC) in PM2.5 exceeded 40% and was primarily determined by fluctuations in the share of OC. Sulfates (SO42-), nitrates (NO3-) and ammonium (NH4+) dominated in the ionic composition of PM2.5 and accounted together ~34% (Szczecin), ~30% (Trzebinia) and ~18% (Złoty Potok) of PM2.5 mass. Source apportionment analysis, performed by PCA-MLRA model (Principal Component Analysis – Multilinear Regression Analysis), revealed that secondary aerosol, whose presence is related to oxidation of gaseous precursors emitted from fuel combustion and biomass burning, had the largest contribution in observed PM2.5 concentrations. In addition, the contribution of traffic sources together with road dust resuspension, was observed. The share of natural sources (sea spray, crustal dust) was generally lower.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3