Machine learning application for power systems reliability assessment

Author:

Sorokin Dmitry

Abstract

The paper presents the principles and features of the use of machine learning methods to assess the power system reliability. Based on the analysis of publications, the main approaches to the application of machine learning methods are given. A prototype of an automatic system has been developed to identify in real time potentially dangerous power system states, the occurrence of which can lead to the power system failures.

Publisher

EDP Sciences

Subject

General Medicine

Reference26 articles.

1. Concept of Digital Transformation 2030, PJSC Rosseti. https://www.rosseti.ru/sustainable-development/digital-transformation-2030/

2. Steven W. Knox. Machine Learning: a Concise Introduction. – Wiley – 2018.

3. Kychnik A.V. and others. Forecasting power consumption in aggregated groups, ensemble models and selective choice models. – Energy of a single network, No. 1 (56). – 2021.

4. Tomin N.V., Kornilov V.N., Kurbatsky V.G. Increasing the efficiency of hourly forecasting of electricity consumption using machine learning models using the example of the Irkutsk energy system. -Electricity. Transmission and distribution. – No. 1(70), 2022.

5. Tanfilyev O.V., Sidorova A.V., Cheremnykh A.A. Application of ensembles of decision trees and linear regression for operational load forecasting. – Electricity. Transmission and distribution. – No. 6(69), 2021.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3