An integrated control on thermal and noise environment of tropical building material

Author:

Samodra FX Teddy Badai,Irvansyah ,Erwindi Collinthia

Abstract

The environmental problems of thermal and noise environment are recently considered the most important contributors to the tropical building in an urban area. The porous tropical materials provide both a solution for cooling and airborne noise problem from the source to receiver when the wind is in the same direction. This research optimizes the integrated control of thermal and noise environment which are directed into building material evaluation. Surabaya is selected as representative of the hotter area of the lowland while Malang is determined as the colder urban area of the highland. An eco-tropical lightweight material, wood, is examined as a case study. The field measurement for surface material temperature and its transmission loss were conducted in order to give information on thermal and acoustical properties of the material. The optimization is conducted by comparing Sound Reduction Index and by Conduction Heat Flow. The results highlighted that for the same material, the thickness that effect on its mass is important for both thermal and noise control. The higher the thickness is, the higher the Sound Reduction Index and the lower the conduction heat flow are. Modifying material by adding the thickness of wood results that by material mass minimum 36.5 kg/m2, the critical lowland building meets the standard of World Health Organization noise limits and has lower heat gain.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3