Author:
Nadhifa Sheila,Afriansyah Renno,Bismo Setijo
Abstract
Ozone is one of the most powerful oxidizing equipment, so it is effectively used to kill bacteria, viruses, and fungi. Many industrial processes use ozone because ozone can run without forming a by-product in water. Nevertheless, the utilization of ozone in Indonesia has not been applied maximally, due to the large cost of commercial ozonator equipment and operational life that is relatively short. In addition, many still do not comprehensively comprehend the ozonation process that is relatively very fast in the presence of ozone conditions that can only last a few minutes before parsing back into oxygen. In this study, the DBD (Dielectric Barrier Discharge) plasma reactor model with parallel plates for ozone generation at room temperature was developed. Furthermore, this study is more focused on conducting performance tests and optimizing ozone productivity in parallel spacer corona discharge chambers. This designated ozonator was treated as a plasma reactor to perform various tests with varying feed flow rates, input voltages, and gas feeds (compressed air and medical oxygen). After the productivity of the ozonators were tested with iodometric titration method, the ozonator’s productivity in generating ozone and its optimum operating condition were obtained. It can produce up to 0.82 g ozone/h with compressed air feed and 6.45 g ozone/h with medical oxygen feed.
Reference10 articles.
1. Ozonation of drinking water: Part I. Oxidation kinetics and product formation
2. Salomon C., Ozone Disinfection. West Virginia: National Small House Clearinghouse, (1998)
3. Rice R. G. and Netzwer A., Handbook of Ozone Technology and Applications. Ann Arbor Science Publisher, 1 (1982)
4. Smith W., Principles of Ozone Generation, Watertec Engineering Pty Ltd., Australia, (2011)
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献