Abstract
The article deals with the problem of increasing the durability of underground and buried buildings. One of the methods of solving this problem is ensuring the reliable protection of underground structures from the effects of water of different origin. Among the existing waterproofing coatings, mineral-based compositions are the most effective. However, the main disadvantage of such systems is the low crack resistance of hard coatings, which limits their applicability. We have made an attempt to develop a cement-based waterproofing material that would have high elasticity, strength, crack resistance and adhesion to a concrete base. We have conducted studies to justify the possibility of obtaining an effective waterproofing material by including microsilica and ethylene vinyl acetate in the mix. The optimal composition of the material was worked out. On the basis of the experimental data, the main physical and mechanical properties of the material were established. Based on the obtained results, it was found that the resulting material had high physical and mechanical characteristics and could be recommended for the protection of concrete structures used in underground construction.
Reference25 articles.
1. GEO-ECOLOGY OF THE SUBTERRANEAN SPACE WITHIN THE FRAMEWORK OF ENVIRONMENTAL SCIENCES
2. Shilin A A, Zajcev M V, Zolotarev I A and Lyapidevskaya O B 2003 Waterproofing of Underground and Buried Structures in Construction and Repair (Tver: Russian trademark) pp 25-100
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献