Dynamic Prediction of the Thermal Nonlinear Process Based on Deep Hybrid Neural Network

Author:

Wang Peng,Si Fengqi

Abstract

Nonlinear system prediction plays an important role in the practical thermal process, and deep learning algorithm is now popular in nonlinear dynamic system modeling because of its powerful learning ability. In this paper, the dynamic artificial neural networks (DANNs), which can be divided into two different types with external dynamic characteristics and internal dynamic characteristics, are analyzed. The mathematical formulations of feedforward deep neural network (DNN), traditional recurrent neural network (RNN) and Long-Short Term Memory network (LSTM) models are given. Furthermore, the structure of deep Hybrid Neural Network (DHNN) is described. Finally, the applicability of the above models in the thermal nonlinear process with different structural features is discussed. Simulation experiments reveal that DANNs with internal dynamic characteristics more suitable for solving thermal nonlinear system modeling problems with unknown order, and DHNN based on LSTM model has performed much better in approximating the dynamics of the thermal process with state parameters.

Publisher

EDP Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3