Thermo-fluid dynamic performance of a ventilated pitched roof: Numerical modelling and experimental validation

Author:

Moschetti Roberta,Nocente Alessandro,Geving Stig,Gullbrekken Lars

Abstract

Wooden ventilated pitched roofs represent a widely spread construction solution in Nordic countries. They have several benefits, including the drainage of excessive moisture from the construction and the reduction of the surface temperature to prevent snow melting and thus icing at the eaves and gutters. Modelling ventilated components is complex and requires a thorough understanding of the phenomena occurring in the air cavity, where convection plays a central role in the heat transfer process. The approach and the assumptions adopted for the roof model are therefore crucial to investigate the thermo-fluid dynamics in the air cavity. A literature review showed the need for comprehensive numerical and experimental research focusing on ventilated roof constructions, especially for Nordic climates. This article presents the thermo-fluid dynamic modelling of a ventilated pitched roof, which belongs to a full-scale experimental building located in Trondheim (Norway), the ZEB Test Cell Laboratory. A model of the roof was created using the finite element method-based software COMSOL Multiphysics. Transient simulations were performed in different climate conditions and the results of temperature and air flow speed along the cross section of the roof were compared with measurement data for validation. The simulation results show a good agreement with measurement data for both air speed and temperature in the air cavity, particularly in the summer day. The deviations in the numerical results will be object of study in future research, where the modelling approach will be further explored by testing different inputs, including boundary conditions and turbulence models.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3