Automatic Classification of Railway Complaints using Machine Learning

Author:

Sathivika Roy Tulasi,Vasukidevi G.,Malleswari T.Y.J. Naga,Ushasukhanya S.,Namratha Nayani

Abstract

People may now express their thoughts and ideas with a wider audience because of the popularity of social media sites like Twitter, Instagram, and Facebook. Businesses now utilise Twitter to reply to client comments, reviews, and grievances. Every day, millions of individuals discuss a wide range of issues on Twitter by sharing their ideas and interests. Sentiment analysis is a useful method for analysing such data, which involves identifying the sentiment of the source text and classifying it as positive, neutral, or negative. However, due to the vast amount of data, it can be challenging for businesses to address every customer’s question or complaint in a timely manner. Some issues may be urgent but delayed due to the volume of information. In order to prioritize emergency tweets, a system is proposed that utilizes machine learning algorithms such as Random Forest, Support Vector Machine, Logistic Regression, and Naïve Bayes to identify tweets based on their urgency. The proposed system gathers and preprocesses unstructured data, performs feature extraction, trains, assesses and compares multiple machine learning models to determine the best classifier with the highest accuracy, and uses vectorization via a pipeline to determine the sentiment of a new tweet provided as input.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3