Enhancing IoT Data Integrity and Effectiveness through hybrid Compression Method: A Step Towards Energy Efficiency

Author:

Idir Yasmine,Moumen Idriss,Abouchabaka Jaafar,Rafalia Najat

Abstract

The expansion of the Internet of Things (IoT) has magnified the challenge of managing data generated by IoT devices, notably in meteorological applications like temperature and humidity monitoring. This research addresses the imperative of efficiently reducing IoT data volume while preserving data integrity and underscores the significant implications for energy consumption. Our approach involved a two-fold strategy, employing the DHT11 sensor and ESP32 microcontroller for data collection, followed by an exploration of various data compression algorithms: delta encoding, run-length encoding (RLE), variable-length integer encoding (VLI), and bit-packing. The strategic combination of RLE and delta encoding yielded an exceptional compression rate of 98%. Beyond data reduction, this methodology offers energy savings by minimizing data transmission times, evidenced by the swift 133-microsecond compression process. Furthermore, the seamless transmission of compressed IoT data to Azure Cloud not only reduced cloud storage costs but also optimized storage space, contributing to energy efficiency. This research illuminates the significance of data compression in mitigating the environmental impact of IoT technologies, fostering a greener, more energy-conscious future.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3