Study on flexural load bearing performance of small radius steel plate composite girder bridge

Author:

Yang Yang,Qiu Tijun

Abstract

The study of flexural load capacity of small radius steel plate composite girder bridges is of great academic and engineering value. This study is based on an actual engineering project and modelled by MIDAS finite element software, aiming to explore the limit states of load carrying capacity of small radius steel plate girder bridges under various conditions. The results show that under different radii of curvature, the flexural performance of the inner and outer main girders is similar, and as the radius of curvature increases from R100 to R400, the maximum positive stress of the combined girder bridge changes less and does not exceed its resistance value, revealing the low sensitivity of flexural load carrying capacity to the radius of curvature. While the load carrying performance of inner and outer main girders is still similar when examining different calculated span diameters, the adverse effect of the positive temperature gradient on the flexural performance is more obvious, which makes the flexural load carrying capacity show a high sensitivity to the change of the calculated span diameter. Finally, when different numbers of main girders are considered, the positive stress values of each main girder are similar, and the sensitivity of the flexural capacity to the number of main girders remains low despite the relatively unfavourable effect of the positive temperature gradient. The study of flexural capacity of small-radius steel plate composite girder bridges is of great significance for the structural design and safety assessment of bridges.

Publisher

EDP Sciences

Reference15 articles.

1. JianGuo Nie. Steel-coagulation composite structure bridge [M]. Beijing: People's Transportation Press, 2011.

2. Zhong Zhu, Yang Zhao. Comparative analysis of structural performance of variable cross-section steel plate combination girder construction scheme[J]. Transportation Science and Technology, 2018(6): 55-59.

3. Zhang H, Jingxuan Zhang, Tan SUN. Research on the influencing parameters of shear hysteresis effect of curved steel-concrete composite girder bridge[J]. Northern Traffic, 2019.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3