A novel model and design of a MEMS Stirling cooler for local refrigeration

Author:

Bégot Sylvie,GETIE Muluken,Diallo Alpha,Lanzetta François,Barthès Magali,de Labachelerie Michel

Abstract

In this paper, we present a new model design and parametric studies of a miniature Stirling cooler machine for on-site refrigeration. The MEMS (Microelectromechanical systems) technology is investigated to design this machine. The concept could be used to provide cooling at chip scale and mitigate hot spots in electronic devices. Whereas numerous works deal with Stirling engines at a macroscopic scale, only a few works concern miniaturized Stirling engines. Therefore, a model analysis giving insights of the impact of the technological choices and downsizing of the machine is needed. A base design model is presented. The model results lead to a cooling power of 10 mW and a Coefficient Of Performance of 1.45. A parametric study is conducted for operational and design parameters. Compared to macro-scale design, the same trend is observed for the influence of the thermal performance regenerator. Different trends from macroscopic engines were observed for hysteresis losses importance, and the choice of the working gas. The raise in power due to the raise in frequency expected for micro-scale devices is counterbalanced by the degradation of the COP due to the increase in thermofluidic losses. Squeeze film damping and finite speed losses can be neglected at this scale.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3