Methods for assessing hydrological and geoecological risks based on modelling

Author:

Niyazov Jafar,Kalashnikova Olga,Pochechun Viktoria,Semyachkov Aleksandr

Abstract

This study is intended for decision-makers in the field of water resources use (irrigation and hydropower) and for emergency prevention authorities. Another problem remains intensive technogenic pollution of the environment, including water bodies, and one of the main tasks in the conditions of technogenesis is the development of predictive models for the migration of polluting chemical elements and substances in the environment. To calculate the runoff of the river the HBV3-ETH9 hydrological model and the CMIP5 RCP4.5 and RCP8.5 climate projections were used, according to which the air temperature is expected to increase by 2.3 and 4.3 °C, respectively, in annual precipitation - by 10% of the norm. In the period 2023-2080, a gradual increase in annual runoff is expected by 9-23%, and according to the extreme scenario, by 9-36% of the norm, which is associated with intensive glacier water loss, seasonal snowmelt and rainfall. In the future, the passage of two flood peaks (in June and July) is possible. The increase in water content in April and May will contribute to increased mudflow and flood activity.

Publisher

EDP Sciences

Subject

General Medicine

Reference16 articles.

1. Status and prospects of integrated water resources management in the Zerafshan river basin. (2010). http://www.cawater-info.net/zeravshan/pdf/tj_zeravshan_fuU_rus.pdf

2. Pachauri R.K. and Meyer L.A., Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (IPCC, Geneva, Switzerland, 2014) https://www.ipcc.ch/site/assets/uploads/2018/02/SYR_AR5_FINAL_fuU_ru.pdf

3. Elevation-dependent warming in mountain regions of the world

4. Shults V.L., Rivers of Central Asia (L: Gidrometeoizdat, 1965)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3