Biotechnologies in the creation of black and red rice varieties for functional nutrition

Author:

Goncharova Yulia,Bragina Olesya,Goncharov Sergey,Kharitonov Evgeniy

Abstract

Resistant varieties allow to reduce water consumption, application of pesticides and herbicides during their production, which is necessary for the development of energy-efficient and organic cultivation technologies. Another task facing breeders is the creation of black-grain and red-grain rice varieties containing up to 20 times more antioxidants than white-grain rice varieties for functional nutrition. To solve these problems, systems of molecular markers have been developed to control the inclusion of target loci in the cultivar genotype. The production of rice varieties with colored pericarp in Russia is associated with the inclusion in the genotype of created varieties genes that determine drought resistance, due to the lack of irrigation water in most rice-growing regions. To reduce the complexity of creating varieties of functional direction with given characteristics, markers linked to genes of interest are grouped into multiplex complexes presented in the work. They simultaneously control both the adaptability and the nutritional value of the material. Four multiplex complexes control 11 loci that determine the content of micro and macro elements. The first one controls the genes that determine the content of Mn, Ca on chromosome 3 and Zn on the eighth chromosome. The second controls two genes that determine the content of iron (on chromosomes 6 and 8) and manganese on the tenth chromosome. The third helps to identify polymorphism at the loci that determine the content of Zn, P, K and other traits that determine the nutritional value on chromosomes 5, 6, 8. Five complexes help to track the inclusion in the genotype of 13 loci that determine the formation of traits associated with the adaptability of rice samples.

Publisher

EDP Sciences

Reference17 articles.

1. Moyer J., Nichols K., Bhosekar V., Asian Journal of Science and Technology, 8 (4), 4628–4634 (2017)

2. Fedulova E.A., Medvedev A.V., Kosinskiy P.D., Kononova S.A., Pobedash N., Foods and Raw Materials, 4 (1), 154–162 (2016)

3. Chavas J., Posner J., Hedtcke J., Agronomy Journal, 101, 288–295 (2009)

4. Fotev Yu.V., Pivovarov V.F., Artemyeva A.M., Kulikov I.M., Goncharova Yu.K., Syso A.I., Goncharov N.P., V.J. of Genetics and Breeding, 22 (7), 776–783 (2018)

5. Lu K., Li L., Zheng X., Zhang Z., Mou T., Hu Z., J. Genet, 87, 305–310 (2008)

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. IMPROVING COLOURED RICE GRAIN QUALITY THROUGH ACCELERATED BREEDING;SABRAO Journal of Breeding and Genetics;2024-02-29

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3