Predicting the rheological flow of fresh self-consolidating concrete mixed with limestone powder for slump, V-funnel, L-box and Orimet models using artificial intelligence techniques

Author:

Onyelowe Kennedy C.,Kontoni Denise-Penelope N.,Ebid Ahmed M.,Onyia Michael E.

Abstract

In this paper, selected materials that influence the viscosity of the self-consolidating concrete (SCC) are introduced like the Limestone Powder (LSP), the High Range Water Reducing Admixture (HRWRA), which reduce the interparticle force between concrete constituents like the aggregates, and other superplasticizers. Moreover, in serious attempts to design the SCC for different infrastructure requirements, there have been repeated laboratory visits, which need to be reduced. In this research paper, the artificial intelligence (AI) methods: Artificial Neural Network (ANN), Evolutionary Polynomial Regression (EPR), and Genetic programming (GP) have been deployed to predict the slump flow (SF), V-funnel flow time (VFFT), L-box ratio (LBR) or passing ratio, and Orimet flow time (OFT) of LSP-admixed SCC. The independent variables of the predictive model were cement, LSP, water, water-binder ratio, HRWRA, sand, and coarse aggregates of 4/8 mm and 8/16 mm sizes. The flow tests were conducted after 5 minutes of waiting time after mixing. The model results showed ANN with superior intelligent learning ability over previous models in terms of overall performance.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3