Possibilities of combining radiant wall cooling with ejector cooling cycle powered by Fresnel solar collectors

Author:

Krajčík Michal,Masaryk Michal,Šimko Martin,Mlynár Peter

Abstract

Solar ejector cooling presents an alternative to the commonly used compressor vapour machines. It is a potentially feasible technology for space cooling providing that the temperature of the cooling water is high enough to assure reasonable efficiency of the chiller. This could be achieved by increasing the evaporation temperature of the cooling cycle through its combination with a high-temperature radiant cooling system. We explore the possibilities and benefits of combining a high-temperature radiant wall system with a solar ejector cycle for space cooling of buildings. The lowest water temperature in the wall to prevent condensation was 18°C for the wall with pipes underneath the surface whereas it was 14°C for the wall with pipes embedded in the thermal core. Thus, the evaporation temperature was substantially higher for the radiant systems than for fancoils. For the conventional vapour compressor cooling, this increased the system efficiency (COP) by 30 to 50%. The COP of the ejector cooling cycle was about half of that for the compressor vapour cycle when R1234ze was used as the refrigerant, however, the primary energy was lower for ejector cooling. Using thermally active building systems (TABS) provided a reasonable cool storage capacity for as much as five hours which allows turning the cooling machines off for several hours during peaks in energy demand.

Publisher

EDP Sciences

Reference32 articles.

1. International Energy Agency. Global Status Report – Towards a zero-emission, efficient and resilient buildings and construction sector (2018).

2. Directive (EU) 2018/2001 of the European Parliament and of the Council of 11 December 2018 on the promotion of the use of energy from renewable sources.

3. Directive 2012/27/EU of the European Parliament and of the Council of 25 October 2012 on energy efficiency, amending Directives 2009/125/EC and 2010/30/EU and repealing Directives 2004/8/EC and 2006/32/EC.

4. Directive (EU) 2018/2002 of the European Parliament and of the Council of 11 December 2018 amending Directive 2012/27/EU on energy efficiency.

5. IEA – International Energy Agency, https://www.iea.org/topics/energyefficiency/buildin gs/cooling/(Accessed 18 May 2019).

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3