Resilience of Canadian homes and small buildings to the effects of climate change - Risk of deterioration due to condensation within wall assemblies

Author:

Defo Maurice,Lacasse Michael

Abstract

The objective of this study was to assess the potential effects of climate change on the moisture performance and durability of typical Canadian wood-frame walls using hygrothermal simulations, with a particular attention to the risk of condensation. To reduce the risk of condensation, the National Building Code of Canada (NBCC) recommends a maximum air leakage rate of 0.10L/sm2 at 75 Pa in buildings with interior relative humidity not greater than 55%. This leakage rate was evaluated in five cities across Canada for a wood-frame wall having brick cladding, with and without outdoor insulation and both walls meeting the minimum insulation requirements given in NBCC. It is found that the risk of condensation will be reduced in the future in all 5 cities analysed. The reduction in the risk of condensation is slightly higher for the wall with no exterior insulation than for the wall with exterior insulation. This reduction in the risk of condensation means that the limit of 0.10L/(sm2) for building having a warm side relative humidity of less than 55% may be reconsidered in the future. There may however be some risks associated with the increase in rain in some cities.

Publisher

EDP Sciences

Reference13 articles.

1. Mukhopadhyaya P., Kumaran K., Nofal M., Tariku F., van Reenen D., 7th Symposium on Building Physics in the Nordic Countries (2005)

2. Ojanen T., Kumaran M., Symp. on Moisture Problems in Building Walls (1995)

3. NBCC, National Building Code of Canada (National Research Council of Canada, 2015)

4. IPCC, Climate change 2014. Synthesis report. Intergovernmental Panel on Climate Change (IPCC, 2014)

5. Lacasse M. A., Ge H., Hegel M., Jutras R., Laouadi A., Sturgeon G., Wells J., Guideline on Design for Durability of Building Envelopes (NRC, 2018)

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3