Development of digital technologies for the systems of remote mining safety monitoring

Author:

Slashchov Ihor,Slashchov Anton,Siromaschenko Illya,Kurinnyi Volodymyr,Ikonnikov Maksym

Abstract

The article is devoted to development of methodology and digital technologies for assessing, forecasting and determining scenarios of geomechanical process evolution. A new digital technology is proposed for remote mining safety monitoring, which integrates a network personnel management system and expert subsystems for decision-making support taking into account geomechanical factors presenting risk of the mine roadway stability loss. Elements of the expert subsystems analyze data in real time, and are used to determine potential risks on basis of criteria and assessments of the production environment state in mines. It is proposed to identify the forecast safety indicators with the help of geomechanical models and by assessing scenarios of the “support-rocks” system stressstrain state evolution. In order the expert assessment of the rock massif and mine roadway stability, integral indicators of emergency potential risk for each geotechnical system elements are specified by values of informative parameters at a certain time point, as well as deviations rates of parameters from the equilibrium point over a period of time. Job safety is provided through the improved effectiveness of personnel interaction and its stricter disciplinary responsibility, as well as by making early decisions on keeping the mine roadways in a trouble-free condition.

Publisher

EDP Sciences

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Justification of the Dynamics of Extra-Project Loads on Building Structures;Advances in Science and Technology;2024-09-09

2. The scientific landmarks for the development and evaluation of the effectiveness of vibration and noise absorbing materials;IOP Conference Series: Earth and Environmental Science;2024-05-01

3. Forecasting the risks of underground roadway stability loss based on mine research data;IOP Conference Series: Earth and Environmental Science;2024-05-01

4. Regularities of rocks zonal disintegration and methane emissions periodicity in mine roadways;IOP Conference Series: Earth and Environmental Science;2024-05-01

5. Fuzzy logic methods for risk management at mining enterprises;IOP Conference Series: Earth and Environmental Science;2023-04-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3