Hyperspectral regression lossless compression algorithm of aerospace images

Author:

Sarinova Assiya,Zamyatin Alexander

Abstract

In this work, we propose an algorithm for compressing lossless hyperspectral aerospace images, which is characterized by the use of a channel-difference linear regression transformation, which significantly reduces the range of data changes and increases the degree of compression. The main idea of the proposed conversion is to form a set of pairs of correlated channels with the subsequent creation of the transformed blocks without losses using regression analysis. This analysis allows you to reduce the size of the channels of the aerospace image and convert them before compression. The transformation of the regressed channel is performed on the values of the constructed regression equation model. An important step is coding with the adapted Huffman algorithm. The obtained comparison results of the converted hyperspectral AI suggest the effectiveness of the stages of regression conversion and multi-threaded processing, showing good results in the calculation of compression algorithms.

Publisher

EDP Sciences

Reference20 articles.

1. Kashkin VB, Sukhinin AI (2008) Digital processing of aerospace images. Krasnoyarsk: SFU. 278 p. (In Russian)

2. Salomon D. (2007) Data compression. The complete reference. Springer-Verlag. 1118 p.

3. Sayood K. (2006) Introduction to Data Compression. USA. Universitet Nebraska. Morgan Kaufmann Publishers is an imprint of Elsevier. San Francisco, CA 94111. 703 p.

4. Pratt William K.. (2001) Digital Image Processing: PIKS Inside, Third Edition. John Wiley & Sons, Inc, 738 p.

5. Onboard processing of hyperspectral data in remote sensing systems based on hierarchical compression

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3