Physical and geotechnical properties of a silty sand soil treated with calcium carbonate fixing bacteria

Author:

Garzón E.,Morales L.,Reca J.,Romero E.,Sánchez-Soto P.J.

Abstract

The objective of the present study is to develop a biotechnological tool for a new application of silty sand soil as stabilized materials in linear works replacing chemical stabilizer (e.g. cement and lime) by natural cement, formed by precipitated calcium carbonate generated by microorganisms of the Sporosarcina family. For this purpose, it is conducted a chemical and mineralogical characterization and an examination of physical and geotechnical properties, being very important from the engineering standpoint. The results of different tests are presented here. The data show that the effects of bacteria are reducing the soil specific surface and increasing its plasticity. The reason for this result could be the addition of a plastic component to the natural soil, or the result of the more aggregated structure promoted during the treatment. The pore size distribution of the soil changes in an approximate range 3 - 30 µm, where the pore mode tends to disappear. The change in the pore density function is reflected in the mechanical behaviour of the treated soil, which presents typical features of a less dense soil with respect to the natural untreated one. The friction angle of the treated soil is slightly higher, and its compressibility is consistently lower than that of the natural soil. As the bacteria do not seem to produce any cementation effect on the soil skeleton, collapse upon wetting does not seem to be significantly affected by the treatment. On the contrary, comparison of collapse data shows that occurrence and amount of collapse are ruled by the as-compacted dry density. The tests performed seem to suggest that the microbiological technique may be effective to improve the mechanical characteristics of the compacted soil. For that, it is necessary to provide more energy in compacting the treated soil that it will be stabilized, so as to achieve a high initial dry density. From this viewpoint, it seems that higher compaction effort is even more effective than increasing the amount of bacteria introduced to stabilize the soil.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3