Yielding of a quartz sand from saturated to dry state

Author:

Butticè Vincenzo,Ferrari Alessio,Rosone Marco

Abstract

The paper presents the results of an experimental work where we analyse the behaviour of an unsaturated quartz sand in a wide range of degree of saturation (from saturated to dry state). The possibility of anticipating the hydro-mechanical behaviour of the soils when they approach the dry state is fundamental in many areas. An extensive experimental program, including controlled-suction and constant water content oedometric tests, was carried out to deeply analyse the water retention behaviour and the relationship between the yield stress and suction (Loading-Collapse curve). All elasto-plastic models provide a monotonically increase of the yield stress with suction. This assumption implies that the yield stress in the dry state is larger than the one relative to the saturated state, in contrast with the classical geotechnical points of view, which suggest that the yield stress of dry granular material must be approximately the same as that of the saturated one. The obtained results show that the yield stress of the sand does not increase monotonically with the suction, as predicted by commons models. In fact, the Loading - Collapse curve showed in this work presents a maximum point, and the yield stress for saturated condition is almost the same of the dried one.

Publisher

EDP Sciences

Reference37 articles.

1. Unsaturated resilient behavior of a natural compacted sand

2. Effect of hydraulic hysteresis on low-traffic pavement deflection

3. Effective stress concept for the effect of hydraulic hysteresis on the resilient behaviour of low traffic pavements

4. Bishop A. W., Donald I. B., 5th Int. Conf. Soil Mech., Paris, France. 13-22 (1961)

5. Donald I. B., 2nd Australia – New Zealand Conf. Soil Mech. Found Eng. Christchurch, New Zealand. 200-205 (1956)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3