Regression Test List Sharding in a Distributed Test Environment

Author:

Gonsalves Michelle,Mandala Jyothi

Abstract

One of the major issues during the regression test of the new version of Real Time Operating System (RTOS) is the time involved in test case execution. The main reason being a single embedded system device under test (DUT) is used to execute the test list containing several test cases. This traditional method of regression test also leads to wasted productivity of the other devices at hand that could be otherwise used during this regression test. Hence, in this paper, we propose a technique that aims at reducing the overall regression test cycle time of a newer version of a Real Time Operating System (RTOS) by employing a method known as “test-list sharding” in a distributed test environment. In the proposed work, multiple DUTs are connected to the test server via a communication network. The test server executes the test list containing several test cases and performs the test-list sharding, that is, distributing test cases to different DUTs and executing them in parallel. After the test is executed on the DUT, the test results are sent back to the test server which will summarize all the results. In the proposed work, the sharding is done by distributing the test cases without overloading or under loading any of the DUTs. Test list is sharded in such a way that the same tests are not sent to multiple DUTs. The main advantage of the proposed method is that the test sharding can be easily scalable to accommodate any number of devices that can be connected to the test server. Also, the test list sharding is done in a dynamic way so that the tests are distributed to an idle DUT that has completed a test execution and ready for another test to execute. The comparison study of executing a sample test list sequentially on a single DUT and distributed test system with multiple DUTs is performed. Results obtained showed the performance gain in terms of test cycle time reduction, scalability, equal load distribution and effective resource utilization.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3