Investigating the thermal effect of channel heatsink using MWCNTs nanofluids

Author:

C M Arun kumar,P C Mukesh kumar,C Kavitha

Abstract

The utilisation of Multi-walled carbon nanotubes (MWCNTs) nanofluids is considered to be a highly efficient approach in the field of thermal engineering, specifically for the purpose of cooling electronic processors. The usage of a microchannel along with an electronic chip for liquid cooling of electronics presents a compelling substitute to the conventional bulky aluminium heat sinks. A minichannel heat sink employing MWCNTs nanofluid as a coolant is further enhanced in thermal and hydraulic performance. In order to analyze the performance of the minichannel heat sinks, a conjugate heat transfer model has been solved using the commercial software ANSYS-CFD. Theoretically, it showed that the presence of MWCNTs reduced thermal resistance and increased the thermal conductivity of liquid cooling system. The results reveal a maximum enhancement of in average heat transfer coefficient ( h ) for minichannel heat sink using MWCNTs as a coolant at volume 40%, 46%, and 52% concentrations of 0.25%, 0.5% and 0.75%. The performance evaluation shows that the overall performance of the minichannel heat sink using MWCNTs cooled minichannel heat sink at 0.75% volume concentration is roughly enhanced more as compared to water.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3