Comparing the Performance of Accuracy Using 3D CNN Model with the Fixed Spatial Transform With 3D CNN Model for the Detection of Pulmonary Nodules

Author:

S Hemnath,Ramalingam Geetha

Abstract

Aim: The research study aims to detect the accuracy level of the pulmonary nodule using a convolutional neural network (CNN). The comparison between the Novel 3D CNN-fixed spatial transform algorithm and Novel 3D CNN Model algorithm for accurate detection. Materials and Methods: The information for this study was gained from the Kaggle website. The samples were taken into consideration as (N=20) for 3D CNN-fixed spatial transform and (N=20) 3D CNN Model according to the clinical. com, total sample size calculation was performed. Python software is used for accurate detection. Threshold Alpha is 0.05 %, G power is 80% and the enrollment ratio is set to 1. Result: This research study found that the 3D CNN with 89.29% of accuracy is preferred over 3D CNN with fixed spatial transform which gives 78.5% accuracy with a significance value (p=0.001), (p<0.05) with a 95% confidence interval. There is statistical significance between the two groups. Conclusion: The mean value of 3D CNN -fixed spatial transform is 78.5% and Novel 3D CNN is 89.29%.Novel 3D CNN appears to give better accuracy than 3D CNN-fixed spatial transform.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3