Developing the Security for Cloud Information Via Alexnet Learning Model versus the accuracy of Artificial Neural Network

Author:

E Thriveni.,R Mahaveerakannan

Abstract

The main objective of the study is to protect cloud from different types of attacks by using AlexNet classifier compared accuracy with Artificial Neural Network and user’s data to be stored in the cloud safely by Advanced Encryption Standard. Materials and Methods: This research examines two groups AlexNet withArtificial Neural Network. Statistical study used 1300 training and 403 testing datasets from UNSW-NB15 dataset. ClinCalc programme utilised N=10, 0.05 is alpha value, 0.8% is G-Power, and 95% confidence interval.Result and Discussion: Novel Alexnet (91.081%) has an increased precision over ANN (90.075%) with the P value is 0.012(p<0.05) from the results of Independent samples t-test. There is a statistical significant difference between these two algorithms.Conclusion: This study concludes that the Novel AlexNet classifier algorithm seems fundamentally better than the ANN in terms of increasing the accuracy of secure cloud data and holding sensitive data with the dataset of UNSW-NB15.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3