Analysis of the use of vector autoregressions in economic forecasting

Author:

Svetunkov S.G.

Abstract

Using vector autoregressions is a promising direction in short-term economic forecasting. They do not simply model the relationship between different factors, but also model the time-distributed relationship of these factors. Vector autoregressions are suitable for modeling complex dynamic economic multifactor processes. The complexity of the problem of estimating coefficients, which increases with the dimensionality of vectors, prevents the widespread use of autoregressions in practice. Vector autoregressions in complex-valued form with the same dimensionality as the modeled vector contain a much smaller number of coefficients. This facilitates the estimation of the coefficients of vector autoregressions. Some problems requiring further investigation arise when using vector autoregressions in complex form. Among them is the problem of selecting the best model. The information criteria used for this purpose limit the variety of vector autoregressions, reducing them to elementary models. The study was supported by the Russian Science Foundation grant No. 23-28-01213, https://rscf.ru/project/23-28-01213.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3