Prerequisites for the development of the system of automatic comparison of video and audio tracks by the speaker’s articulation

Author:

Shakirzyanov Marsel,Gibadullin Ruslan,Nuriyev Marat

Abstract

Deep learning and reinforcement learning technologies are opening up new possibilities for the automatic matching of video and audio data. This article explores the key steps in developing such a system, from matching phonemes and lip movements to selecting appropriate machine-learning models. It also discusses the importance of getting the reward function right, the balance between exploitation and exploitation, and the complexities of collecting training data. The article emphasizes the importance of using pre-trained models and transfer learning, and the importance of correctly evaluating and interpreting results to improve the system and achieve high-quality content. The article focuses on the need to develop effective mapping quality metrics and visualization methods to fully analyze system performance and identify possible areas for improvement.

Publisher

EDP Sciences

Subject

General Medicine

Reference39 articles.

1. Lammert A.C., Proctor M.I., Narayanan S.S., Proceedings of the 11th Annual Conference of the International Speech Communication Association, INTERSPEECH 2010, 1572–1575 (2010)

2. Characterizing spoken responses in masked-onset priming of reading aloud using articulography

3. Fleet D.J., Weiss Y., Handbook of mathematical models in computer vision, 237–257 (2006)

4. TracTrac: A fast multi-object tracking algorithm for motion estimation

5. Lucas-Kanade 20 Years On: A Unifying Framework

Cited by 18 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3