Development of Stochastic Mathematical Models for the Prediction of Heavy Metal Content in Surface Waters Using Artificial Neural Network and Multiple Linear Regression

Author:

El Chaal Rachid,Aboutafail Mouley Othman

Abstract

The principal purpose of this study is to build stochastic neuronal models, for the prediction of heavy metal, contents in the surface waters of the Oued Inaouen catchment area of the TAZA region, according to their Physico-chemical parameters; we have carried out a comparative study: the multiple linear regression (MLR) method and the artificial neural network (ANN) approach. The following statistical indicators were used to evaluate the performance of the stochastic models developed by neural network and MLR: The sum of the quadratic errors (SSE) and the determination coefficient (R²), also through the study of fit graphs. The results show that the predictive modelling using artificial neural networks is very effective. This performance shows a non-linear relation between the studied Physico-chemical characteristics and the heavy metal contents in the surface waters of the Oued Inaouen catchment area.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3