Preparation of spherical LiNi0.5Mn1.5O4 with core-multilayer shells structure by co-precipitation method and long cycle performance

Author:

Zhou Guo-Jiang,Yu Tao,Zhou Yang,Wei Li-Guo

Abstract

As a promising cathode material for lithium ion battemensionalry of high voltage, spinel LiNi0.5Mn1.5O4 has attracted interest due to its high discharging voltage at 4.7 V and high energy density of 610 Wh kg-1. In this work, LiNi0.5Mn1.5O4 with a new core-multilayer shells structure (LNMO-900) is synthesized successfully by co-precipitation method and shows a better electrochemical performance. The formation of the core-multilayer shells structure is related to the kirkendall effect, the shell maintains structural stability, and improves long cycle performance. Core-multilayer shells structure is also beneficial for transmission of lithium ion, increasing rate performance. The effects of sintering temperature on the performance of LNMO were further investigated. Core-multilayer shells LiNi0.5Mn1.5O4 is synthesized successfully at 900 °C for 12 h uniquely. From the integral calculation of XPS spectra, a higher content of Mn4+ is observed in the outer shell of LNMO-900 compared with other homogeneous solid particles. The discharge specific capacity of LNMO-900 is 129.3 mAh g-1 at 1 C which is superior to others, and after 1000 cycles, LNMO-900 shows capacity retention of 87.9%. The initial capacity of LNMO-900 is 104.9 mAh g-1 at 5 C.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3