Characterization of bedload discharge in bores and very unsteady flows in an ephemeral channel

Author:

Halfi Eran,Deshpande Vishal,Johnson Joel P. L.,Katoshevski David,Reid Ian,Storz-Peretz Yael,Laronne Jonathan B.

Abstract

Bedload flux under steady flow conditions is calculated by a multitude of available methods and equations. Yet, very little is known about the effect of very unsteady flows, such as flash floods and specifically bores, on bedload flux. The unpredictable nature of the floods together with many logistic difficulties and safety issues in monitoring explain this gap in knowledge. Global climate change may increase flood event occurrence, making their understanding even more crucial. The methodology of our study is based on automatically monitoring bedload flux (Reid slot samplers). Automation allowed high frequency monitoring of hydraulic parameters and bedload flux. Added novelty includes pipe and plate microphones for capturing acoustic signals of bedload sediments and 3-D velocimetry for characterizing turbulence. Alerting sensors and cellular data transmission enabled onsite presence upon bore arrival. Calibration between the acoustic indirect sensors and the direct slot samplers allows determination of bedload flux at a frequency of 1 Hz. Analyses of flood events indicate an increase in turbulent kinetic energy, instantaneous vertical velocities, shear stress and bedload flux during the rising limb within the first two minutes after bore arrival. This has implications for the likely destabilization of the channel bed and for bedload transport after passage of the bore and during subsequent, less unsteady flows.

Publisher

EDP Sciences

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3