Global asymptotics of filtration in porous media

Author:

Kuzmina Liudmila,Osipov Yuri,Zheglova Yulia

Abstract

Filtration problems are actual for the design of underground structures and foundations, strengthening of loose soil and construction of watertight walls in the porous rock. A liquid grout pumped under pressure penetrates deep into the porous rock. Solid particles of the suspension retained in the pores, strengthen the loose soil and create watertight partitions. The aim of the study is to construct an explicit analytical solution of the filtration problem. A one-dimensional model of deep bed filtration of a monodisperse suspension in a homogeneous porous medium with size-exclusion mechanism of particles retention is considered. Solid particles are freely transferred by the carrier fluid through large pores and get stuck in the throats of small pores. The mathematical model of deep bed filtration includes the mass balance equation for suspended and retained particles and the kinetic equation for the deposit growth. The model describes the movement of concentrations front of suspended and retained particles in an empty porous medium. Behind the concentrations front, solid particles are transported by a carrier fluid, accompanied by the formation of a deposit. The complex model has no explicit exact solution. To construct the asymptotic solution in explicit form, methods of nonlinear asymptotic analysis are used. The new coordinate transformation allows to obtain a parameter that is small at all points of the porous sample at any time. In this paper, a global asymptotic solution of the filtration problem is constructed using a new small parameter. Numerical calculations are performed for a nonlinear filtration coefficient found experimentally. Calculations confirm the closeness of the asymptotics to the solution in the entire filtration domain. For a nonlinear filtration coefficient, the asymptotics is closer to the numerical solution than the exact solution of the problem with a linear coefficient. The analytical solution obtained in the paper can be used to analyze solutions of problems of underground fluid mechanics and fine-tune laboratory experiments.

Publisher

EDP Sciences

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Global asymptotics of particle transport in porous medium;Journal of Physics: Conference Series;2019-12-01

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3