Fabrication and characterization of aluminum-based powders multi-reinforced with nano- and microparticles

Author:

Aborkin Artemiy,Babin Dmitriy,Bokaryov Dmitriy

Abstract

Multi-reinforced powders were obtained by high-energy ball milling in a planetary mill. The process of obtaining heterogeneous powders consisted of two stages. At the first stage, a nanocomposite powder of AlMg6 + 0.3 wt.% C60 was obtained. In the second stage, 10, 30, 50, and 70 wt.% Al2O3 were added to the obtained nanocomposite powder and processing continued. Methods such as scanning electron microscopy, X-ray diffraction, and particle size analysis were used to characterize the obtained powders. It is shown that after the first stage of processing, the particles of the composite powder are characterized by an irregular shape. C60 reinforcing particles in the form of nanosized agglomerates were fixed on the surface of aluminum powder particles. After the second stage of processing, the particle size of the powder mixture decreased from 17.8 to 12.3 μm, while the proportion of Al2O3 particles increased from 10% to 70% by weight. It is shown that the synthesized heterogeneous powders were a mechanical mixture consisting of complex composition agglomerates and micro-sized ceramic particles. Complex composition agglomerates were formed from nanocrystalline matrix material particles and C60, and also with Al2O3 microparticles embedded in them, as well as located on the surface. The concentration of Al2O3 particles on the surface and inside the agglomerates increased with increasing weight fraction of ceramic particles in the mixture. It has been found that the introduction of 10-70 wt. % Al2O3 into the powder mixture increases the microhardness of the powder particles by approximately 16-23%. The resulting multi-reinforced powder mixtures can be utilized for coating deposition using the cold gas dynamic spraying method.

Publisher

EDP Sciences

Subject

General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3