Climate change impact on the degradation of historically significant wooden furniture in a cultural heritage building in Vestfold, Norway

Author:

Choidis Petros,Sharma Akriti,Grottesi Giulia,Kraniotis Dimitrios

Abstract

Climate change is expected to significantly affect the interior climate of old, leaky buildings without HVAC systems. As a result, the items of cultural significance that are hosted indoors will experience new ambient conditions, which will affect their degradation. In the current research, the impact of climate change on the biological, mechanical, and chemical degradation of a cabinet and a storage trunk which are made of wood and have paintings on their outer surface is investigated. These two items are found in two different rooms of a historic timber building in Vestfold, Norway. Data from the REMO2015 driven by the global model MPI-ESM-LR are used in order to account for past, present, and future climate conditions. In addition, climate data from ERA5 reanalysis are used in order to assess the accuracy of the MPI-ES-LR_REMO2015 model results. Whole building hygrothermal simulations are employed to calculate the temperature and the relative humidity inside the rooms that host the items of interest. The transient hygrothermal condition and certain characteristics of the timber surfaces are used as inputs in models that describe their degradation. The biological degradation is examined by using i) the updated VTT mould model and ii) the Growing Degree Days (GDD) for temperature and humidity dependant insects. The mechanical deterioration is assessed by the method proposed by Mecklenburg et al. (1998). The concept of the Lifetime Multiplier (LM) is used in order to assess the chemical deterioration of the furniture. Results reveal a significant mechanical degradation risk and a very high chemical deterioration risk. The biodeterioration risk remains at acceptable levels. Moreover, it could be possible that the storage trunk would be damaged by certain insects in the future. It is then suggested that both items should be moved to a room with proper conditions in order to minimize their chemical and mechanical deterioration risk and extend their life span. Finally, the significance of implementing bias correction in the data from climate models is underlined.

Publisher

EDP Sciences

Subject

General Medicine

Reference25 articles.

1. Ashley-Smith J. (2013). Deliverable 4.2 Report on Damage Functions in Relation to Climate Change. City.

2. Empirically downscaled temperature scenarios for northern Europe based on a multi-model ensemble

3. Long-term changes in climate and insect damage in historic houses

4. Camuffo D. (1998). Microclimate for cultural heritage. Elsevier. Amsterdam (Netherlands).

5. A Modelling Approach for the Assessment of Climate Change Impact on the Fungal Colonization of Historic Timber Structures

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3