The influence of methane blending ratio on the spontaneous combustion characteristics of high-pressure hydrogen leakage

Author:

Luo Zhenmin,Luo Chuanxu

Abstract

Adding CH4 to high-pressure H2 is considered one of the effective and convenient measures to reduce high-pressure H2 leakage and spontaneous combustion, which is conducive to improving the safety of H2 energy storage. Based on the independently built high-pressure hydrogen leakage and self ignition experimental platform, the influence of CH4 on the critical self ignition pressure and flame of high-pressure H2 leakage and self ignition was tested. The results indicate that the addition of methane can effectively increase the critical spontaneous combustion pressure. When 20% CH4 is added, the critical self ignition pressure can be increased by 151.58%. Under similar discharge pressure conditions, the flame velocity in the pipeline decreases from 1224.64m/s for pure H2 to 1024.07m/s for 10% CH4. In addition, after mixing CH4, the dispersion time of the jet flame is advanced, the flame duration is shortened, and the flame brightness is reduced. There are two main reasons for the mixed inhibition of spontaneous combustion by CH4. On the one hand, it reduces the Mach number of shock wave propagation, thereby lowering the ignition temperature. On the other hand, the activity of the fuel system decreases, and the heat required for self ignition increases.

Publisher

EDP Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3