Face Recognition using Deep Learning

Author:

Koodalsamy Banumalar,Veerayan Manikandan Bairavan,Narayanasamy Vanaja

Abstract

Identifying a person primarily relies on their facial features, which even distinguish identical twins. As a result, facial recognition and identification become crucial for distinguishing individuals. Biometric authentication technology, specifically facial recognition systems, are utilized to verify one’s identity. This technology has gained popularity in modern applications, such as phone unlock systems, criminal identification systems, and home security systems. Due to its reliance on a facial image rather than external factors like a card or key, this method is considered more secure. The process of recognizing a person involves two primary steps: face detection and face identification. This article delves into the concept of developing a face recognition system utilizing Python’s OpenCV library through deep learning. Due to its exceptional accuracy, deep learning is an ideal method for facial recognition. The proposed approach involves utilizing the Haar cascade techniques for face detection, followed by the following steps for face identification. To begin with, facial features are extracted through a combination of CNN methods and the linear binary pattern histogram (LBPH) algorithm. For attendance to be marked as “present,” the check-in and check-out times of the detected face must be legitimate. If not, the face will be displayed as “unknown.”

Publisher

EDP Sciences

Subject

General Medicine

Reference10 articles.

1. Kokpujie Kennedy O., Noma-Osaghae Etinosa, Okesola Olatunji J., John Samuel N., Robert Okonigene, International Conf on Computational Science and Computational Intelligence (2017).

2. Robust Real-Time Face Detection

3. Face recognition by independent component analysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A-eye: Attendance monitoring using face detection and recognition from CCTV footage;2024 4th International Conference on Emerging Smart Technologies and Applications (eSmarTA);2024-08-06

2. Effects of Cropping vs Resizing on the Performance of Brain Tumor Segmentation Models;2024 International Conference on Computer, Information and Telecommunication Systems (CITS);2024-07-17

3. Group Person Identification and Communication Using Deep Learning;2024 International Conference on Emerging Technologies in Computer Science for Interdisciplinary Applications (ICETCS);2024-04-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3